Nominal Rocket Flight
Fuel Needed to Achieve Orbit
Asa Eckert-Erdheim, Cypress Frankenfeld, George Herring
Modeling and Simulation, 2010

Introduction

Although humans have been exploring space for 50 years, the science of rockets and space travel has yet to be perfected. Just recently, a Russian rocket failed to deliver satellites into orbit. A model of a rocket launch is useful for both verifying whether a launch will work and evaluating alternative launch methods, namely electromagnetic launching.

The questions we hope to answer with our model are "What is the optimal amount of fuel needed to bring a particular payload into orbit around Earth and what is the efficiency of an electromagnetic launch mechanism?" To do so, we modeled the flight of a rocket from lift-off to steady orbit.

Only gravity of Eartanstions
Earth and Moon are modeled
Fuel burns steadily
Constant thrust
No wind

Model

The model of the rocket trajectory included three forces: gravity drag, and thrust
The desired direction of thrust was determined by the difference be ween desired total energy and current total energy. The desired total hergy was divided into kinetic energy (tangent to the orbit) and poten tial (perpendicular to the orbit).
The fuel needed to get into orbit for a particular payload was found by making an initial guess (high enough to get the rocket to orbit) the orbit. The energy efficiency was modeled by calculating the total kinet ic energy of the rocket at launch then adding the chemical potential energy of the rocket fuel. The amount of rocket fuel is minimized to be ing only what's necessary for getting into orbit.

$\rho=$ Air density

A $=$ Frontal surface area of the rocke
$C_{d}=$ Coefficient of drag
$\mathrm{v}=$ Velocity of the rocket
G = Gravitational constant
$\mathrm{R}_{\text {Earth }}=$ Distance between the rocket and the Earth $\mathrm{R}_{\text {Moon }}=$ Distance between the rocket and the Moo $\mathrm{T}=$ Constant thrust value

Results

Figure 1: Flight of the rocket. The orbit radius of this flight is $2 e 6 \mathrm{~m}$ from the surface of the Earth. When the rocket reaches orbit, the thrust is cut of and it begins traveling in a steady orbit. In order for the orbit to be steady, the velocity must be enough that the centripetal acceleration cancels out the gravitational forces on the rocket.

Figure 3: Minimum fuel needed to launch Figure 4: Energy efficiency of a maga payload of a given mass into orbit. The slope is increasing.

Validation

Given a particular thrust, the rocket would go into circular orbit. Given less than that amount of thrust, the rocket would crash into the Earth (See Figure 5). The mass, thrust, diameter, and burn time are also based on real values and are all within 2 orders of magnitude of a Delta II rocket [2].

Figure 5: Flight of the rocket when the thrust is too low (0.75% of the needed thrust). The rocket crashes into the Earth.

Figure 6: The modeled density of air in the atmosphere. Data for this model is from [1]. At 100 km , the density is assumed to be zero.

The model successfully simulated physical properties when we ran simplified tests. For example, when we plotted the density of the atmosphere over altitude, it acted as expected

SpaceX Rocket Comparison

| | SpaceX | Model | Error (\%) |
| :--- | :--- | :--- | :--- | :--- |
| Mass of Fuel $(\mathrm{x} 9)(\mathrm{kg})$ | 42000 | 42000 | 0 |
| Thrust $(\mathrm{x} \mathrm{9})(\mathrm{N})$ | 6.16 E 6 | 7.5 E 6 | 21.75 |
| Fuel Rate $(\mathrm{x} 9)(\mathrm{kg} / \mathrm{s})$ | 140 | 100 | 28.57 |
| Altitude of Orbit (m) | 294500 | 294500 | 0 |
| Diameter Nose Cone (m) | 3.6 | 3.6 | 0 |
| | | | |
| | | | |
| Distance $(\mathrm{t}=4: 30)(\mathrm{m})$ | 210000 | 291120 | 38.63 |
| Velocity $(\mathrm{t}=4: 40)(\mathrm{m} / \mathrm{s})$ | 3700 | 7602 | 105.48 |
| Distance $(\mathrm{t}=6: 00)(\mathrm{m})$ | 264000 | 301500 | 14.20 |
| Velocity $(\mathrm{t}=6: 00)(\mathrm{m} / \mathrm{s})$ | 4300 | 7232 | 68.2 |
| Distance $(\mathrm{t}=7: 20)(\mathrm{m})$ | 300000 | 312470 | 4.16 |
| Velocity $(\mathrm{t}=7: 20)(\mathrm{m} / \mathrm{s})$ | 5500 | 6809 | 23.81 |

Table 1: Comparison between flight data of the SpaceX rocket launch on December 8 and a simulated trajectory. Using similar parameters, the results are within one order of magnitude of the actual values. Differences can be attributed to simplifications in the model, mainly that the modeled rocket has one stage and the SpaceX rocket has two.

Conclusion

For a rocket of the parameters we specified, we determined the specific amount of fuel needed to successfully launch a payload into orbit. We also determined the usefulness of an electromagnetic launch and the optimal initial launch velocity for a given mass, highlighting the importance of pursuing alternative launch methods for the future of space travel. However, this model is limited in scope and would need to be substantially expanded for use of an actual rocket.

Future Work

Multistage rocket
Supersonic drag
Launching to/orbiting another planet

References

Sieminski, Mark and Sanjoy Mahajan
-12/airplane/atmosmet.html

